首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling diffusive dissolution in silicate melts
Authors:Conel MO’D Alexander
Institution:Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA
Abstract:Here empirical models for calculating self-diffusion coefficients and diffusion matrices are combined with MELTS, a thermodynamic model for silicate minerals and melts, to estimate diffusive dissolution rates, interface melt compositions and melt diffusivities. Simulations of olivine dissolution experiments in basalt show that the overall model is capable of accurately reproducing diffusive dissolution rates, and the resulting diffusion profiles, over a range of pressures and temperatures. However, the overall model is less successful at reproducing olivine dissolution in andesite, diopside dissolution in either basalt or andesite, or anorthite dissolution in picrite. Yet, even for these systems the predicted dissolution rates are generally within about a factor of two of the measured ones. Comparisons between simulations and experiments suggest that errors in the self-diffusion and thermodynamic models are responsible for the differences, and show that dissolution experiments could be a powerful way of testing and calibrating these and similar models. The overall model will also be a useful tool for designing future experiments, and for identifying the parameters that control diffusive dissolution (and crystallization) in silicate melts under a wide range of conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号