首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rates of trace metal and nutrient diagenesis in an intertidal creek bank
Authors:Thomas Riedel  Karsten Lettmann  Melanie Beck
Institution:a Mikrobiogeochemie, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Universität, 26111 Oldenburg, Germany
b Physikalische Ozeanographie, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Universität, 26111 Oldenburg, Germany
Abstract:Carbon mineralization in marine sediments is a key process involved in the cycling of carbon, nutrients and trace metals. However, as marine sediments are usually diffusion dominated, the pace of element and nutrient cycling is slow, because consumption of oxidants and/or nutrients in the pore waters via microbial activity often outpaces resupply. Adding an advective flow component to such a system should change the biogeochemical dynamics considerably. Numerical simulations show that shallow coastal aquifers affected by tidal forces can establish ground water velocities of up to 7 cm h−1, driving a circulation of sea water through the sediments with subsequent discharge. Although known to enhance solute exchange, the impact of advection on early diagenesis has not received much attention.To address this issue we mapped the interstitial water chemistry down to 2.5 m sediment depth along a transect on an intertidal creek bank that is subject to a periodic advective flow. Additionally a recently developed hydrogeological simulation of the creek bank was applied to calculate ages of the sampled pore waters. Sample ages obtained were used to quantify (flow path integrated) production or depletion rates for trace metals, nutrients, and sulphate.We find young sea water percolating relatively fast through sediments close to the creek showing strong signs of alteration, whereas pore waters from diffusion dominated regions are less altered. The increase in inorganic nutrients and some trace elements along the flow path requires high rates of turnover. Sulphate, molybdenum, and uranium are almost completely depleted after 200 days, while dissolved inorganic carbon (DIC), ammonia, and manganese increase. Averaged production rates for DIC appear to be three times higher when advection dominated the subsurface flow regime. Our results demonstrate that sites dominated by advection generally show signs of faster rates of diagenetic reactions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号