首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shock effects in “EH6” enstatite chondrites and implications for collisional heating of the EH and EL parent asteroids
Authors:Alan E Rubin  John T Wasson
Institution:a Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA
b Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA
c Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
Abstract:Of the six chondrites that were listed as EH6 or EH6-an during the course of this study, we confirm the EH classification of Y-8404, Y-980211 and Y-980223 and the EH-an classification of Y-793225; two chondrites (A-882039 and Y-980524) are reclassified as EL (the former contains ferroan alabandite and both contain kamacite with ∼1 wt% Si). All of the meteorites contain euhedral enstatite grains surrounded by metal ± sulfide (although this texture is rare in Y-793225), consistent with enstatite crystallizing from a mixed melt. All contain enstatite with <0.04 wt% MnO; the three EH chondrites average 0.25 wt% Mn in troilite. (Literature data show that typical EH3-EH5 chondrites contain enstatite with 0.13-0.20 wt% MnO and troilite with 0.05-0.11 wt% Mn.) The three EH chondrites contain keilite (Fe>0.5,Mg<0.5)S], which has been interpreted in the literature as a product of impact melting. Y-8404 and Y-980223 contain abundant silica (∼13 and ∼10 wt%, respectively), a rare phase in most enstatite chondrites. We suggest that all six meteorites have experienced impact melting; Mn was preferentially partitioned into sulfide during subsequent crystallization. The silica-rich samples may have become enriched in the aftermath of the impact by a redox reaction involving FeO and reduced Si. A-882039, Y-8404, Y-980211, Y-980223 and Y-980524 were incompletely melted; they contain rare relict chondrules and are classified as impact-melt breccias; Y-793225 is a chondrule-free impact-melt rock. If these EH and EH-an chondrites (which were previously listed as petrologic type 6) have, in fact, been impact melted, it seems plausible that collisional heating is generally responsible for EH-chondrite metamorphism. This is consistent with literature data showing that a large fraction (?0.7) of those chondrites classified EH5-7 and a significant fraction (?0.3) of those chondrites classified EH4 and EH4/5 possess textural and mineralogical properties suggestive of impact melting. In addition, ∼60% of classified EL6-7 chondrites (now including A-882039 and Y-980524) appear to have formed by impact melting. It thus seems likely that collisional heating is mainly responsible for EL- and EH-chondrite metamorphism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号