首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The partitioning of copper between silicate melts and two-phase aqueous fluids: An experimental investigation at 1 kbar, 800°?C and 0.5?kbar, 850°?C
Authors:T J Williams  Philip A Candela  Philip M Piccoli
Institution:(1) Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland at College Park, College Park, MD 20742–4211, USA, US
Abstract: Experiments were performed in the three phase system high-silica rhyolite melt+low-salinity aqueous vapor+hydrosaline brine, to investigate the partitioning equilibria for copper in magmatic-hydrothermal systems at 800° C and 1 kbar, and 850° C and 0.5 kbar. Daqm/mlt Cu and apparent equilibrium constants, Kaqm/mlt Cu,Na, between the aqueous mixture (aqm=quenched vapor+brine) and the silicate melt (mlt) are calculated. Daqm/mlt Cu increases with increasing aqueous chloride concentration and is a function of pressure. Kaqm/mlt Cu,Na=215(±73) at 1 kbar and 800° C and Kaqm/mlt Cu,Na=11(±6) at 0.5 kbar and 850°C. Decreasing pressure from 1 to 0.5 kbar lowers Kaqm/mlt Cu,Na by a factor of approximately 20. Data revealed no difference in Kaqm/mlt Cu,Na or Daqm/mlt Cu as a function of the melt aluminium saturation index. Within the 2-phase field the Kaqm/mlt Cu,Na show no variation with total aqueous chloride, indicating that copper-sodium exchange between the vapor, brine and silicate melt is independent of the mass proportion of vapor and brine. Model copper-sodium apparent equilibrium constants for the hydrosaline brine and the silicate melt revealed a negative dependence on pressure. Model apparent equilibrium constants for copper-sodium exchange between the brine and vapor were close to unity at 1 kbar and 800° C. Received: 27 June 1994/Accepted: 30 March 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号