首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calibrating the GOCE accelerations with star sensor data and a global gravity field model
Authors:Sietse Rispens  Johannes Bouman
Institution:1.SRON Netherlands Institute for Space Research,Utrecht,The Netherlands;2.Deutsches Geod?tisches Forschungsinstitut (DGFI),Munich,Germany
Abstract:A reliable and accurate gradiometer calibration is essential for the scientific return of the gravity field and steady-state ocean circulation explorer (GOCE) mission. This paper describes a new method for external calibration of the GOCE gradiometer accelerations. A global gravity field model in combination with star sensor quaternions is used to compute reference differential accelerations, which may be used to estimate various combinations of gradiometer scale factors, internal gradiometer misalignments and misalignments between star sensor and gradiometer. In many aspects, the new method is complementary to the GOCE in-flight calibration. In contrast to the in-flight calibration, which requires a satellite-shaking phase, the new method uses data from the nominal measurement phases. The results of a simulation study show that gradiometer scale factors can be estimated on a weekly basis with accuracies better than 2 × 10−3 for the ultrasensitive and 10−2 for the less sensitive axes, which is compatible with the requirements of the gravity gradient error. Based on a 58-day data set, scale factors are found that can reduce the errors of the in-flight-calibrated measurements. The elements of the complete inverse calibration matrix, representing both the internal gradiometer misalignments and scale factors, can be estimated with accuracies in general better than 10−3.
Keywords:GOCE  Gradiometer  Accelerations  Calibration  Star sensor  Global gravity field model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号