首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical Investigations of Mean Winds Within Canopies of Regularly Arrayed Cubical Buildings Under Neutral Stability Conditions
Authors:Takaaki Kono  Tetsuro Tamura  Yasunobu Ashie
Institution:1.Department of Environmental Science and Technology,Tokyo Institute of Technology,Yokohama,Japan;2.Environmental Research Group,Building Research Institute,Tsukuba-shi,Japan;3.Building Department, National Institute for Land and Infrastructure Management,Tsukuba-shi,Japan
Abstract:Recently, several attempts have been made to model the wind velocity in an urban canopy in order to accurately predict the mixing and transport of momentum, heat, and pollutants within and above the canopy on an urban scale. For this purpose, unverified assumptions made by Macdonald (Boundary-Layer Meteorol 97:25–45, 2000) to develop a model for the profile of the mean wind velocity within an urban canopy have been used. In the present study, in order to provide foundations for improving the urban canopy models, the properties of the spatially-averaged mean quantities used to make these assumptions have been investigated by performing large-eddy simulations (LES) of the airflow around square and staggered arrays of cubical blocks with the following plan area densities: λ p = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. The LES results confirm that the discrepancy between the spatial average of wind velocity and Macdonald’s five-point average of wind velocity can be large in both types of arrays for large λ p . It is also confirmed that Prandtl’s mixing length varies significantly with height within the canopy, contrary to Macdonald’s assumption for both types of arrays and for both small and large λ p . On the other hand, in accordance with Macdonald’s assumption, the sectional drag coefficient is found to be almost constant with height except in the case of staggered arrays with high λ p .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号