首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prograde and retrograde equilibria in garnet-cordierite gneisses in south-central Massachusetts
Authors:Paul C Hess
Institution:(1) Department of Geological Sciences, Brown University, Providence, Rhode Island
Abstract:Partial electron microprobe analyses of garnet, biotite and cordierite in sillimanite-K feldspar gneisses of the Brimfield Formation in south-central Massachusetts indicate that the compositions of these minerals are not constant in a thin section. The FeO/MgO mol ratio of biotite is sensitive to the nature of other FeO-MgO minerals occurring in close proximity. The most iron-rich biotites are those that do not contact either cordierite or garnet. The most iron-poor biotites occur as inclusions in garnet. Biotites in direct contact with either cordierite or garnet have intermediate FeO/MgO ratios. The bulk of a given grain of garnet or cordierite is homogeneous in composition. Chemical zoning is absent. All grains of garnet and cordierite in a thin section are constant in composition. However, where garnet and cordierite abut biotite, the FeO/MgO ratio of the garnet rim is increased and that of cordierite is decreased. The FeO/MgO ratios of garnet, cordierite and biotite bare a regular relation to each other indicating a possible equilibrium state. However the distribution coefficient defined by the compositions of minerals in direct contact are greater than those defined by the compositions of the interiors of garnet and cordierite matched with the compositions of biotites removed from these phases. This pattern is believed to be the result of two thermal events. The first event produced the mineral assemblages and widespread equilibrium was obtained. A subsequent retrograde event left the mineralogy intact but caused cation exchange reactions at immediate contacts between garnet, cordierite and biotite. The physical conditions of the first event are estimated at P=5–6 kb, T=700–750° C. The retrograde event occurred at lower temperatures and very low activities of H2O since no muscovite is developed at microcline-sillimanite contacts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号