首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A New Mapping Protocol for Laser Ablation (with Fast-Funnel) Coupled to a Time-of-Flight Mass Spectrometer (LA-FF-ICP-ToF-MS) for the Rapid,Simultaneous Quantification of Multiple Minerals
Authors:Dany Savard  Sarah Dare  L Paul Bédard  Sarah-Jane Barnes
Institution:LabMaTer, Module des Sciences de la Terre, CERM (Centre d’Études sur les Ressources Minérales), Université du Québec à Chicoutimi, 555 boulevard Université, Chicoutimi, Qc (Canada) G7H 2B1
Abstract:Although in situ analysis by LA-ICP-MS is considered a rapid technique with minimal sample preparation and data reduction, mapping areas of millimetres in size using a small beam (< 15 μm) can be time consuming (several hours) when a quadrupole ICP-MS is used. In addition, fully quantitative imaging using internal standardisation by LA-ICP-MS is challenging in samples with more than one mineral phase present due to varying ablation rates. A new protocol for the quantification of multiple coexisting phases, mapped at a rate of about 12 mm2 h-1 and a resolution of 12 μm × 12 μm per pixel, is presented. The protocol allows mapping of most atomic masses, ranging from 23Na to 238U, using a time-of-flight mass spectrometer (ICP-ToF-MS, TOFWERK) connected to a 193 nm excimer laser. A fast-funnel device was successfully used to increase the aerosol transport speed, reducing the time usually required for mapping by a factor of about ten compared with a quadrupole ICP-MS. The lower limits of detection for mid and heavy masses are in the range 0.1–10 μg g-1, allowing determination of trace to ultra-trace elements. The presented protocol is intended to be a routine analytical tool that can provide greater access to the spatial distribution of major and trace elements in geological materials.
Keywords:LA-ICP-MS  LA-ICP-ToF-MS  fast mapping  multiple phases  data reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号