首页 | 本学科首页   官方微博 | 高级检索  
     检索      


3. Solar System Formation and Early Evolution: the First 100 Million Years
Authors:Thierry Montmerle  Jean-Charles Augereau  Marc Chaussidon  Mathieu Gounelle  Bernard Marty  Alessandro Morbidelli
Institution:1. Laboratoire d’Astrophysique de Grenoble, Université Joseph Fourier, Grenoble, France
2. Centre de Recherches Pétrographiques et Géochimiques (CRPG), Nancy, France
3. Muséum National d’Histoire Naturelle, Paris, France
4. Natural History Museum, London, UK
5. Ecole Nationale Supérieure de Géologie, Nancy, France
6. Observatoire de la C?te d’Azur, Nice, France
Abstract:The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.
Keywords:Star formation: stellar clusters  circumstellar disks  circumstellar dust  jets and outflows  solar nebula: high-energy irradiation  meteorites  short-lived radionuclides  extinct radioactivities  supernovae  planet formation: planetary embryos  runaway growth  giant planets  migration  asteroid belt  formation of the Moon  early Earth: atmosphere  core differentiation  magnetic field
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号