首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms
Authors:Lu-Pei Zhu  Rong-Sheng Zeng  Francis T Wu  Thomas J Owens and George E Randall
Institution:(1) Institute of Geophysics, State Seismological Bureau, 100081 Beijing, China;(2) Department of Earth Science, SUNY Binghamton, 13901 New York, USA;(3) Department of Geological Science, University of South Carolina, USA
Abstract:As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5–3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20–30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50–55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 581–592, 1992.
Keywords:the Tibetan Plateau  body waveforms  receiver function inversion  S-velocity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号