首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical and palaeohydrological controls on the composition of shallow groundwater in the Netherlands
Institution:1. Department of Civil Engineering, Kansas State University, 2118 Fiedler Hall, Manhattan, KS 66506, USA;2. Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA;3. INSTAAR, University of Colorado at Boulder, Boulder, CO 80302, USA;4. School of Environmental Science and Engineering and Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518005, China;5. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA;6. Department of Geology, Kansas State University, Manhattan, KS 66502, USA;7. Department of Biology, Duke University, Durham, NC 27708, USA
Abstract:With the exception of the south of the country, the Netherlands has a strong bipartite hydrogeology: the Holocene part with a coastal dune belt and confining top layer of clay and peat further inland, and the Pleistocene, where thick phreatic aquifers dominate. This research aimed to ascertain the geochemical and palaeohydrological controls on the composition of shallow groundwater in 27 regions. Close to 6000 groundwater analyses were grouped and interpreted in terms of 1. salinity, 2. redox status, 3. acid/base and carbonate status and 4. natural nutrients NH4 and PO4. The a priori classification into geographical regions and geological formations revealed many statistically significant differences in medians, even for geologically or geographically related data groups. The compound-specific interpretation indicates that there are geogenically controlled, systematic differences in groundwater composition at the regional scale. The imprint of the geological sediments on the groundwater composition decreases in the order marine/estuarine via limnological, fluvial to aeolian. The imprints with respect to pH and carbonate status, natural nutrients and redox status are not necessarily interrelated. The vertical stratification in groundwater composition turns out to be often limited at the regional scale due to mutual occurrence of infiltrating and exfiltrating groundwater in regions and either the presence of a highly reactive Holocene, confining top layer or temporal changes in contamination. In the Holocene part, the salinity is controlled by the palaeoenvironmental conditions during the Holocene and by the recharge origin: the average Cl concentration decreases from estuarine via lagoonal to the former Zuider Sea (which was a bay). The most reduced states and also the highest nutrient concentrations and highest CO2 pressure are related to the presence of Holocene marine sediments in the confining top layer. Degradation of marine-derived organic matter as a nutrient source, is likely more intense in the Holocene deposits than that of peat and sedimentary remnants of terrestrial plants. A broad range in pH, carbonate status and redox status is encountered in the Pleistocene part. Here, the palaeohydrological evolution in terms of carbonate leaching together with the geological controls on the calcareous nature of the shallow sedimentary deposits cause regional differences in pH, calcite saturation and silicate weathering. One region with Late Pleistocene limnological deposits has deviating groundwater characteristics and appears more similar to the Holocene part of the Netherlands. Furthermore, reactive Fe is not abundant in all Pleistocene fluvial sediments nor is it maximally mobilised, as not all anoxic groundwater in these sediments is siderite-saturated. This leads to considerable intra- and inter-region variability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号