首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The air shower maximum probed by Cherenkov effects from radio emission
Institution:1. Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen, The Netherlands;2. SUBATECH, University of Nantes – IN2P3/CNRS– EMN, Nantes, France;1. Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany;2. Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK;3. Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE, UK;4. GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;5. Department of Physics, Washington University, St. Louis, MO 63130, USA;6. Aix Marseille Université, CNRS/IN2P3, CPPM, 163 avenue de Luminy, case 902, 13288 Marseille, France;7. Observatoire de Paris, CNRS, PSL University, LUTH & GEPI, Place J. Janssen, 92195, Meudon cedex, France;8. University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, UK;9. Erlangen Centre for Astroparticle Physics (ECAP), Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany;10. Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA;11. CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon, France;12. Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK;13. School of Physical Sciences, University of Adelaide, Adelaide5005, Australia;14. Institute for Space–Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan;15. University of Hawai’i at Manoa, 2500 Campus Rd, Honolulu, HI 96822, USA;1. Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA;2. Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA;3. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA;4. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 229-8510, Japan;5. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA;1. Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany;2. Institut für Astro‐ und Teilchenphysik, Leopold Franzens Universität Innsbruck, Technikerstrasse 25/8, A 6020 Innsbruck, Austria;3. Institut für Astronomie und Astrophysik, Abteilung Hochenergieastrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität, Sand 1, D 72076 Tübingen, Germany;4. Physikalisches Institut, Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany;5. Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;6. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland;1. Dept. of Physics and CCAPP, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA;2. Dept. of Physics, University of Maryland, College Park, MD 20742, USA;3. Dept. of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA;4. Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409, Russia;5. Dept. of Physics and Astronomy, University of Nebraska-Lincoln, 855 N 16th Street, Lincoln, NE 68588, USA;6. Dept. of Physics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, ROC;7. Dept. of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom;8. Dept. of Physics and Astronomy, University of Hawaii-Manoa, 2505 Correa Rd., Honolulu, HI 96822, USA;9. Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, 222 W. Washington Ave, Madison, WI 53706, USA;10. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel;11. Service de physique des particules élémentaires, Université Libre de Bruxelles, CP230, boulevard du Triomphe, 1050 Bruxelles, Belgium;12. Dept. of Physics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan;13. Dept. of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716, USA;14. Instrumentation Design Laboratory, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045, USA
Abstract:Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号