首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The peculiar motions of early-type galaxies in two distant regions – VI. The maximum-likelihood Gaussian algorithm
Authors:R P Saglia  Matthew Colless  David Burstein  Roger L Davies  Robert K McMahan  Jr  and Gary Wegner
Institution:Institut für Astronomie und Astrophysik, Scheinerstraße 1, D-81679 Munich, Germany;Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611, Australia;Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA;Department of Physics, University of Durham, South Road, Durham DH1 3LE;Department of Physics and Astronomy, University of North Carolina, CB#3255 Phillips Hall, Chapel Hill, NC 27599-3255, USA;Department of Physics and Astronomy, Dartmouth College, Wilder Lab., Hanover, NH 03755, USA
Abstract:The EFAR project is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. Here we describe the maximum-likelihood algorithm we developed to investigate the correlations between the parameters of the EFAR data base. One-, two- and three-dimensional Gaussian models are constructed to determine the mean value and intrinsic spread of the parameters, and the slopes and intrinsic parallel and orthogonal spread of the Mg2–Mg b ', Mg2– σ , Mg b '– σ relations, and the Fundamental Plane. In the latter case, the cluster peculiar velocities are also determined. We show that this method is superior to 'canonical' approaches of least-squares type, which give biased slopes and biased peculiar velocities. We test the algorithm with Monte Carlo simulations of mock EFAR catalogues, and derive the systematic and random errors on the estimated parameters. We find that random errors are always dominant. We estimate the influence of systematic errors resulting from the way clusters were selected, and the hard limits and uncertainties in the selection function parameters for the galaxies. We explore the influence of uniform distributions in the Fundamental Plane parameters and the errors. We conclude that the mean peculiar motions of the EFAR clusters can be determined reliably. In particular, the placement of the two EFAR sample regions relative to the Lauer & Postman dipole allows us to constrain strongly the amplitude of the bulk motion in this direction. We justify a posteriori the use of a Gaussian modelling for the galaxy distribution in the Fundamental Plane space, by showing that the mean likelihood of the EFAR sample is obtained in 10 to 30 per cent of our simulations. We derive the analytical solution for the maximum-likelihood Gaussian problem in N dimensions in the presence of small errors.
Keywords:galaxies: clusters: general  galaxies: distances and redshifts  galaxies: elliptical and lenticular  cD  galaxies: fundamental parameters  large-scale structure of Universe
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号