首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitivity of carbon cycling in the European Alps to changes of climate and land cover
Authors:Bärbel Zierl  Harald Bugmann
Institution:(1) Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH-Zentrum CHN G76.1, 8092 Zurich, Switzerland
Abstract:Assessments of the impacts of global change on carbon stocks in mountain regions have received little attention to date, in spite of the considerable role of these areas for the global carbon cycle. We used the regional hydro-ecological simulation system RHESSys in five case study catchments from different climatic zones in the European Alps to investigate the behavior of the carbon cycle under changing climatic and land cover conditions derived from the SRES scenarios of the IPCC. The focus of this study was on analyzing the differences in carbon cycling across various climatic zones of the Alps, and to explore the differences between the impacts of various SRES scenarios (A1FI, A2, B1, B2), and between several global circulation models (GCMs, i.e., HadCM3, CGCM2, CSIRO2, PCM). The simulation results indicate that the warming trend generally enhances carbon sequestration in these catchments over the first half of the twenty-first century, particularly in forests just below treeline. Thereafter, forests at low elevations increasingly release carbon as a consequence of the changed balance between growth and respiration processes, resulting in a net carbon source at the catchment scale. Land cover changes have a strong modifying effect on these climate-induced patterns. While the simulated temporal pattern of carbon cycling is qualitatively similar across the five catchments, quantitative differences exist due to the regional differences of the climate and land cover scenarios, with land cover exerting a stronger influence. The differences in the simulations with scenarios derived from several GCMs under one SRES scenario are of the same magnitude as the differences between various SRES scenarios derived from one single GCM, suggesting that the uncertainty in climate model projections needs to be narrowed before accurate impact assessments under the various SRES scenarios can be made at the local to regional scale. We conclude that the carbon balance of the European Alps is likely to shift strongly in the future, driven mainly by land cover changes, but also by changes of the climate. We recommend that assessments of carbon cycling at regional to continental scales should make sure to adequately include sub-regional differences of changes in climate and land cover, particularly in areas with a complex topography.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号