首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5
Authors:K Wainer  D Genty  D Blamart  M Daëron  M Bar-Matthews  H Vonhof  Y Dublyansky  E Pons-Branchu  L Thomas  P van Calsteren  Yves Quinif  N Caillon
Institution:1. Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS/UVSQ1572 Bat 701, L’Orme des Merisiers CEA Saclay, 91 191 Gif sur Yvette cedex, France;2. Geoazur, Université de Nice-Sophia-Antipolis, UMR6526, La Darse, B.P. 48, 06235 Villefranche/Mer, France;3. Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS/UVSQ1572 Bat 12, avenue de la Terrasse, 91 198 Gif sur Yvette cedex, France;4. Geological Survey of Israël, 30 Malchei Israel St, Jerusalem 95501, Israel;5. Departement of Sedimentology and Marine Geology Faculty of Earth and life sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands;6. Institut für Geologie und Paläontologie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria;7. Department of Earth and Environmental Sciences, The Open University, Milton Keynes MK7 6AA, UK;8. Institut Jules Cornet (Géologie), Faculté Polytechnique de Mons, Rue de Houdain, 9, 7000 Mons, Belgium;1. Institute of Geological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Switzerland;2. Department of Archaeology and Center for Past Climate Change, School of Archaeology, Geography and Environmental Science, University of Reading, UK;3. Department of Earth Sciences, University of Minnesota, USA;4. Institute of Global Environmental Change, Xi''an Jiaotong University, Xi''an 710049, China;5. Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland;1. Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany;2. Institute of Geography, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany;3. Heidelberg Academy of Sciences, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany;4. Institute for Geosciences, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany;5. Institute of Geology and Palaeontology, Leopold-Franzens-University Innsbruck, Innrain 52, 6020 Innsbruck, Austria;1. College of Geography Science, Nanjing Normal University, Nanjing 210023, China;2. Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA;3. Institute of Global Environmental Change, Xi''an Jiaotong University, Xi''an 710049, China;4. School of Geographical Sciences, Southwest University, Chongqing 400715, China;1. Institute for Geological and Geochemical Research, RCAES, Hungarian Academy of Sciences, Budaörsi út 45, Budapest H-1112, Hungary;2. Department of Physical and Applied Geology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary;3. High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC;4. Institute for Nuclear Research, Hungarian Academy of Sciences, Bem tér 18/c, Debrecen H-4026, Hungary;5. Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary;6. Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary;1. Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Budaörsi út 45, H-1112, Hungary;2. Department of Physical and Applied Geology, Eötvös University, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary;3. High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan;4. University of Lausanne, Institute of Earth Surface Dynamics, CH-1015 Lausanne, Switzerland;5. Hungarian Meteorological Service, Budapest, Kitaibel Pál u. 1, H-1024, Hungary;6. Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Sopron, Csatkai E. u. 6-8, H-9400, Hungary
Abstract:The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号