首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced turbulent mixing induced by strong wind on the South China Sea shelf
Authors:Yanwei Zhang  Jiwei Tian
Institution:1. State Key Lab of Marine Geology, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
2. Physical Oceanography Laboratory, Ocean University of China, No. 238 Songling Road, Qingdao, 266100, China
Abstract:Integrated observations were made on the South China Sea shelf at 19°37’ N, 112°04’ E, under strong wind and heavy raining weather conditions in August 2005. Current data were obtained using a moored 150-kHz Acoustic Doppler Current Profiler, turbulent kinetic energy dissipation rate were measured with TurboMapII, and temperature was recorded by thermistor chains. Both the mixed layer thickness and the corresponding mean dissipation rate increased after the strong wind bursts. Average surface mixed layer thickness was 13.4 m pre-wind and 22.4 m post-wind, and the average turbulent dissipation rate in the mixed layer pre-wind and post-wind were 4.26 × 10?7 and 1.09 × 10?6 Wkg?1, respectively. The post-wind dissipation rate was 2.5 times larger than the pre-wind dissipation rate in the interior layer and four times larger in the intermediate water column. Spectra and vertical mode analysis revealed that near-inertial motion post-wind, especially with high modes, was strengthened and propagated downward toward the intermediate layer. The downward group velocity of near-inertial current was about 8.1 × 10?5 ms?1 during the strong wind bursts. The mean percentage of wind work transmitted into the intermediate layer is about 4.2 %. The ratio of post-wind high-mode energy to total horizontal kinetic energy increased below the surface mixed layer, which would have caused instabilities and result in turbulent mixing. Based on these data, we discuss a previous parameterization that relates dissipation rate, stratification, and shear variance calculated from baroclinic currents with high modes (higher than mode 1) which concentrate a large fraction of energy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号