首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Macrofaunal succession in sediments around kelp and wood falls in the deep NE Pacific and community overlap with other reducing habitats
Authors:Angelo F Bernardino  Craig R Smith  Amy Baco  Iris Altamira  Paulo YG Sumida
Institution:1. Oceanographic Institute, University of Sao Paulo, Pça do Oceanográfico, 191, Sao Paulo, SP, Brazil;2. Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, Hawaii 96822, USA
Abstract:Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25–5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25–0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8–5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20–30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0–5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to β and γ diversity in deep-sea ecosystems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号