首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau,NW Spain)
Authors:César Morales-Molino  Mercedes García-Antón
Institution:1. Departamento de Silvopascicultura (U.D. Botánica), E.T.S.I. de Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;2. Departamento de Biología (Botánica), Facultad de Ciencia, Universidad Autónoma de Madrid, c/Darwin 2, Cantoblanco, 28049 Madrid, Spain
Abstract:We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bølling/Allerød was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400–6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 cal yr BP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands.
Keywords:Pollen  Microscopic charcoal  Paleoecology  Iberian Peninsula  Late glacial  Holocene  Coprophilous fungi  Climate change  Human impact
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号