首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Venus Monitoring Camera for Venus Express
Institution:1. ESAC-ESA, Villafranca del Castillo, PO Box 78, Villanueva de la Cañada, E-28691 Madrid, Spain;2. Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark\n;3. Technische Universität, Zentrum für Astronomieund Astrophysik, Hardenbergstraße 36, D-10623, Berlin, Germany;4. IAPS-INAF, Via Fosso del Cavaliere 100, 00133, Rome, Italy;1. Space Research Institute (IKI), Profsoyuznaya 84/32, 117997 Moscow, Russia;2. LATMOS, CNRS/INSU - IPSL - Univ. Pierre & Marie Curie - Univ. Versailles Saint-Quentin, Université Paris-Saclay, 11 Boulevard d''Alembert F-78280 Guyancourt, France;3. Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia;1. Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan;2. Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan;1. LATMOS/CNRS/Sorbonne Université/UVSQ, 11 boulevard d’Alembert, Guyancourt, F-78280, France;2. Space Research Institute (IKI), Russian Academy of Sciences, Moscow, 117997, Russia
Abstract:The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号