首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On Kelvin–Helmholtz instability due to the solar wind interaction with unmagnetized planets
Institution:1. Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria;2. Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria;3. Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk-36, Russia;1. Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile;2. Departamento de Física, Facultad de Ciencias, Universidad de Santiago, Santiago, Chile;3. Departamento de Física, Universidad de Concepción, Concepción 4070386, Chile;4. NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771, USA;5. Department of Physics, Catholic University of America, Washington, D.C. 20064, USA;6. Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile;7. Departamento de Ingeniería Eléctrica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile;1. Space Research Institute RAS, Moscow, Russia;2. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia;3. Physics Department, Universidad de Santiago de Chile (USACH), Chile;1. Department of Physics, University of New Brunswick, Canada;2. King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia;1. Kiev National Taras Shevchenko University, Astronomy and Space Physics department, Kyiv, Ukraine;2. Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA;3. Max Planck Institute for Solar System Research, Göttingen, Germany;1. Department of Mathematics, PES University, Bangalore, 560 085 India;2. ISRO Satellite Centre, Bangalore, 560 017 India;3. Department of Mathematics, Bangalore University, Bangalore, 560 056 India
Abstract:In this paper, the Kelvin–Helmholtz instability is studied by solving the ideal MHD equations for a compressible plasma. A transition layer of finite thickness between two plasmas, across which the magnitude of the velocity and the density change, is assumed. Growth rates are presented for the transverse case, i.e., the flow velocity is perpendicular to the magnetic field. If only the velocity changes across the boundary layer and the density is kept constant, an important quantity affecting the growth of the Kelvin–Helmholtz instability is the magnetosonic Mach number, which characterizes compressibility. The growth rates for the case when both, the velocity and the density, change are very sensitive to the ratio of the upper plasma density to the lower plasma density: a decrease of the density ratio yields a decrease of the growth rate. Including a density profile is very important for the application of the Kelvin–Helmholtz instability to the solar wind flow around unmagnetized planets, e.g., Venus, where the plasma density increases from the magnetosheath to the ionosphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号