首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotational kinematic hardening model for three‐dimensional stress reversals in sand
Authors:Poul V Lade  Jerry A Yamamuro  Suresh K Gutta
Institution:1. Department of Civil Engineering, The Catholic University of America, Washington, DC 20064, U.S.A.;2. Department of Civil and Environmental Engineering, Oregon State University, Corvallis, OR 97331, U.S.A.;3. American Geotechnical and Environmental Services, Inc., Canonsburg, PA 15317, U.S.A.
Abstract:A kinematic hardening mechanism has previously been proposed to capture the behavior of soil during large stress reversals in the triaxial plane. This mechanism is now extended to the principal stress space. It incorporates rotation and intersection of yield surfaces to achieve a consistent and physically rational fit with experimentally observed soil behavior during large three‐dimensional stress reversals. An existing elasto‐plastic model with isotropic hardening is used as the basic framework to which the rotational kinematic hardening mechanism has been added. The new combined model preserves the behavior of the isotropic hardening model under monotonic loading conditions, and the extension from isotropic to rotational kinematic hardening under three‐dimensional conditions is accomplished without introducing new material parameters. The framework of the model is presented here with some comparisons between theoretical and experimental directions of strain increment vectors to indicate the potential of the model. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:constitutive model  large stress reversals  plastic strains  principal stress space  rotational kinematic hardening  sand
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号