首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling crack propagation path of anisotropic rocks using boundary element method
Authors:Chien‐Chung Ke  Chao‐Shi Chen  Cheng‐Yu Ku  Chih‐Hao Chen
Institution:1. Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Basement No. 7, Lane 26, Yat‐Sen Road, Taipei 110, Taiwan;2. Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan;3. Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
Abstract:In a cracked material, the stress intensity factors (SIFs) at the crack tips, which govern the crack propagation and are associated with the strength of the material, are strongly affected by the crack inclination angle and the orientation with respect to the principal direction of anisotropy. In this paper, a formulation of the boundary element method (BEM), based on the relative displacements of the crack tip, is used to determine the mixed‐mode SIFs of isotropic and anisotropic rocks. Numerical examples of the application of the formulation for different crack inclination angles, crack lengths, and degree of material anisotropy are presented. Furthermore, the BEM formulation combined with the maximum circumferential stress criterion is adopted to predict the crack initiation angles and simulate the crack propagation paths. The propagation path in cracked straight through Brazilian disc specimen is numerically predicted and the results of numerical and experimental data compared with the actual laboratory observations. Good agreement is found between the two approaches. The proposed BEM formulation is therefore suitable to simulate the process of crack propagation. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:stress intensity factor  boundary element method  mixed‐mode  anisotropic rock  crack propagation path
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号