首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain under A1B emission scenario
Authors:Eun-Soon Im  Joong-Bae Ahn  Do-Woo Kim
Institution:1. National Institute of Meteorological Research, Korea Meteorological Administration, Seoul, Korea
3. National Institute of Meteorological Research, Korea Meteorological Administration, 250-3 San, Bangdong-ri Sacheon-myeon, Gangneung-si, Gangwon-do, 250-852, Korea
2. Department of Atmospheric Sciences, Pusan National University, Busan, Korea
Abstract:We analyze the future dryness over Korea based on the projected temperature and precipitation. For fine-scale climate information, the ECHAM5/MPI-OM A1B simulation has been dynamically downscaled using the RegCM3 double-nested system. A 130-year long-term climatology (1971?C2100) from the mother domain (East Asia: 60 km) and nested domain (South Korea: 20 km) is discussed. Based on the intercomparison with CMIP3 participant models, the ECHAM5/MPI-OM provides climatic change information over the East Asia that is not markedly different from other projections. However, the reduction of summer precipitation over Korea is rather different with ensemble mean of CMIP3 participant models. The downscaled results generally follow the behavior of ECHAM5/MPIOM, but substantial fine-scale details are found in the spatial pattern and the change signals become more enhanced at the local scale. In the future projection, significant warming is found regardless of the season and region while the change in precipitation shows a mixed feature with both increasing and decreasing patterns. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the warmer climate. This is related to the negative trends of the self-calibrating Palmer Drought Severity Index (PDSI) to measure the drought condition in Korea. Although PDSI is overall associated with the precipitation variation, its long-term trend tends to be modulated by the temperature trend. It is confirmed that the detrended temperature is shown to mask the decreasing tendency of the PDSI. The result indicates that without an increase in precipitation appropriate for atmospheric moisture demand, future dryness is a more likely condition under global warming.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号