首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban,southern Baikal region,Russia
Authors:D A Ionov  Suzanne Y O'Reilly  Igor V Ashchepkov
Institution:(1) Centre for Petrology and Lithospheric Studies, School of Earth Sciences, Macquarie University, Sydney, NSW 2109, Australia, AU;(2) United Institute of Geology, Mineralogy and Geophysics, Novosibirsk 630090, Russia, RU
Abstract: Lherzolite xenoliths in Miocene to Pleistocene basalts from five sites in the Hamar-Daban range in southern Siberia provide sampling of the mantle close to the axis of the Baikal rift. These anhydrous spinel lherzolites commonly have foliated fabrics and spongy rims around clinopyroxene, and many contain accessory feldspar. The feldspar occurs in reaction zones adjacent to spinel and orthopyroxene (where it appears to have been formed by the reaction: spl+opx+cpx+fluid →fs+ol) and less commonly as thin, irregular veins. The feldspars have variable compositions but are generally alkali-rich; their K2O content ranges from 0.3 to 11.2% and is much higher than in plagioclase from orogenic lherzolites (usually <0.1% K2O). The temperature range for the Hamar-Daban xenolith suite (950–1010° C) is more restricted than for spinel peridotite xenoliths from other occurrences in the Baikal area. The feldspar-bearing lherzolites yield equilibration temperatures similar to or slightly lower than feldspar-free ones. The majority of the Hamar-Daban lherzolites are fertile and clinopyroxene-rich, as for most other occurrences in the Baikal region. Trace element compositions of selected xenoliths and their clinopyroxenes were determined by ICP-MS, INAA and proton microprobe. Feldspar-bearing xenoliths are enriched in alkalies indicating that feldspar formation is associated with addition of material and is not simply due to isochemical phase changes. Most xenoliths and their clinopyroxenes studied are depleted in light REE and have contents of Sr, Zr and Y common for fertile or moderately depleted mantle peridotites. Few are moderately enriched in LREE, Sr, Th and U. Sr-Nd isotope compositions of clinopyroxenes indicate long-term depletion in incompatible elements similar to unmetasomatised xenoliths from other occurrences south and east of Lake Baikal. The formation of feldspar and of spongy aggregates after clinopyroxene, and the enrichment in alkalies appear to be recent phenomena related to infiltration of an alkali-rich, H2O-poor fluid into spinel peridotites. Received: 20 March 1995 / Accepted: 26 June 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号