首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical testing of a new testate amoeba‐based transfer function for water‐table depth reconstruction on ombrotrophic peatlands in north‐eastern Canada and Maine,United States
Authors:Matthew J Amesbury  Gunnar Mallon  Dan J Charman  Paul D M Hughes  Robert K Booth  Timothy J Daley  Michelle Garneau
Institution:1. Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK;2. Geography and Environment, University of Southampton, Southampton, UK;3. Earth and Environmental Sciences Department, Lehigh University, Bethlehem, PA, USA;4. School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK;5. Département de Géographie and GEOTOP, Université du Québec à Montréal, Montréal, Québec, Canada
Abstract:Proxy reconstructions of climatic parameters developed using transfer functions are central to the testing of many palaeoclimatic hypotheses on Holocene timescales. However, recent work shows that the mathematical models underpinning many existing transfer functions are susceptible to spatial autocorrelation, clustered training set design and the uneven sampling of environmental gradients. This may result in over‐optimistic performance statistics or, in extreme cases, a lack of predictive power. A new testate amoeba‐based transfer function is presented that fully incorporates the new recommended statistical tests to address these issues. Leave‐one‐out cross‐validation, the most commonly applied method in recent studies to assess model performance, produced over‐optimistic performance statistics for all models tested. However, the preferred model, developed using weighted averaging with tolerance downweighting, retained a predictive capacity equivalent to other published models even when less optimistic performance statistics were chosen. Application of the new statistical tests in the development of transfer functions provides a more thorough assessment of performance and greater confidence in reconstructions based on them. Only when the wider research community have sufficient confidence in transfer function‐based proxy reconstructions will they be commonly used in data comparison and palaeoclimate modelling studies of broader scientific relevance. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:cross‐validation  North America  peat  testate amoebae  transfer function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号