首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A prominence model in a simple magnetic arcade
Authors:Bardakov  V M
Institution:(1) Institute of Solar-Terrestrial Physics SD RAS, 664033 Irkutsk, P.O. Box 4026, Russia
Abstract:This paper offers an evolution scenario for a simple magnetic arcade where the frozen-in magnetic field decreases with the ascent of its arches together with the plasma. Uplift is produced by the movement of photospheric plasma with a frozen-in magnetic field, which is divergent with respect to a neutral line. A decrease in magnetic field leads to the appearance in the arcade of a height range of arches, with no high-temperature thermal equilibrium present, and to a variation of the nonequilibrium range with time. Uplift of the arcade is accompanied by the consecutive entry of new arches into this range. All arches entering the nonequilibrium range experience a transient process. Some of the earlier inquiries into the physics of this process were instrumental, in the first place, in identifying those arches which – through the production of an ascending plasma flow from the base of the arcade – are involved in the formation of a prominence (with magnetic dips appearing and evolving at the tops of these arches) and, secondly, in synthesizing a computational algorithm for the final state of the transient process, the quasi-steady-state dynamic structure of the prominence. The arcade evolution scenario, combined with the computational algorithm, constitutes a unified prominence model, a model for the transition from a simple static magnetic arcade to a quasi-steady dynamic prominence structure. The model has been used in numerical calculations of parameters of two classes of prominences: in and outside active regions. Results of the calculations are in good agreement with observations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号