首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The consequences of high latitude particle precipitation on global thermospheric dynamics
Authors:M F Smith  D Rees  T J Fuller-Rowell
Institution:

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.

Abstract:A previous comparison of experimental measurements of thermospheric winds with simulations using a global self-consistent three-dimensional time-dependent model confirmed a necessity for a high latitude source of energy and momentum acting in addition to solar u.v. and e.u.v. heating. During quiet geomagnetic conditions, the convective electric field over the polar cap and auroral oval seemed able to provide adequate momentum input to explain the thermospheric wind distribution observed in these locations. However, it seems unable to provide adequate heating, by the Joule mechanism, to complete the energy budget of the thermosphere and, more importantly, unable to provide the high latitude input required to explain mean meridional winds at mid-latitudes. In this paper we examine the effects of low energy particle precipitation on thermospheric dynamics and energy budget. Modest fluxes over the polar cap and auroral oval, of the order of 0.4 erg cm ?2/s, are consistent with satellite observations of the particles themselves and with photometer observations of the OI and OII airglow emissions. Such particle fluxes, originating in the dayside magnetosheath cusp region and in the nightside central plasma sheet, heat the thermosphere and modify mean meridional winds at mid-latitudes without enhancing the OI 557.7 line, or the ionization of the lower thermosphere (and thus enhancing the auroral electrojets), neither of which would be consistent with observations during quiet geomagnetic conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号