首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spiral arms as cosmic ray source distributions
Institution:1. Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria;2. Max Planck Institut für extraterrestrische Physik, Postfach 1312, D-85741 Garching, Germany;1. Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt;2. Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt;1. Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain;2. Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain;3. Department of Biotechnology, Center for Plant Genomics and Biotechnology, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Spain;4. Institute for Integrative Biology of the Cell, Commissariat à l’Energie Atomique et aux Energies Alternatives Saclay, Institut des sciences du vivant Frédéric Joliot, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
Abstract:The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures.We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied.We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth’s position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth’s position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth.Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.
Keywords:Cosmic rays  Propagation  Methods  Numerical  Diffusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号