首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of a dam break for an actual river terrain environment
Authors:C B Liao  M S Wu  S J Liang
Institution:1. Department of Water Resource Engineering, Feng Chia University, Taichung 40724, Taiwan, ROC;2. The Graduate Institute of Civil & Hydraulic Engineering, Feng Chia University, Taichung 40724, Taiwan, ROC;3. Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
Abstract:A two‐dimensional (2D) finite‐difference shallow water model based on a second‐order hybrid type of total variation diminishing (TVD) approximate solver with a MUSCL limiter function was developed to model flooding and inundation problems where the evolution of the drying and wetting interface is numerically challenging. Both a minimum positive depth (MPD) scheme and a non‐MPD scheme were employed to handle the advancement of drying and wetting fronts. We used several model problems to verify the model, including a dam break in a slope channel, a dam break flooding over a triangular obstacle, an idealized circular dam‐break, and a tide flow over a mound. Computed results agreed well with the experiment data and other numerical results available. The model was then applied to simulate the dam breaking and flooding of Hsindien Creek, Taiwan, with the detailed river basin topography. Computed flooding scenarios show reasonable flow characteristics. Though the average speed of flooding is 6–7 m s?1, which corresponds to the subcritical flow condition (Fr < 1), the local maximum speed of flooding is 14·12 m s?1, which corresponds to the supercritical flow condition (Fr ≈ 1·31). It is necessary to conduct some kind of comparison of the numerical results with measurements/experiments in further studies. Nevertheless, the model exhibits its capability to capture the essential features of dam‐break flows with drying and wetting fronts. It also exhibits the potential to provide the basis for computationally efficient flood routing and warning information. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:shallow water model  TVD  dam break  drying and wetting fronts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号