首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regional travel-time and slowness measurements for P-waves in the distance range 40–57°
Authors:C Wright
Institution:Research School of Earth Sciences, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600 Australia
Abstract:A method for analysing travel times measured at a large array or a network of seismographs from many earthquakes within a specific region has been developed. Approximate relative station corrections are calculated from the residuals on a least-squares line or least-squares quadratic form fitted through the times for each earthquake, and may be improved by iteration after a preliminary travel-time curve has been derived. Accurate relative baseline corrections for each earthquake are also calculated iteratively, and an optimum slowness-distance curve is determined from the combined corrected travel times from all earthquakes using a trade-off procedure. Calculations using synthetic travel-time data suggest that abrupt changes in slowness of ~ 0.4 s deg?1 due to the presence of triplications are generally resolvable, provided that the effects of lateral variations are small, even with random epicentre mislocations in the range ± 0.5°. Slowness measurements at a network of temporary stations deployed across Australia do not show any discontinuities in slowness greater than 0.2 s deg?1 in the distance range 45–54°. Similar measurements at the Warramunga array from the same source regions, however, suggest the presence of complexity in the slowness curve at distances close to 50°. Relative arrival times at the temporary network generally have standard deviations less than 0.25 s, thus suggesting that details of structure finer than those derived from conventional travel-time studies can be resolved.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号