首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elastic wave velocities and permeability of cracked rocks
Authors:Y Guguen  A Schubnel
Institution:

Department of Terre Atmosphere Ocean, Ecole Normale Superieure, 24 Rue Lhomond, Paris 74231, France

Abstract:Cracks play a major role in most rocks submitted to crustal conditions. Mechanically, cracks make the rock much more compliant. They also make it much easier for fluid to flow through any rock body. Relying on Fracture Mechanics and Statistical Physics, we introduce a few key concepts, which allow to understand and quantify how cracks do modify both the elastic and transport properties of rocks. The main different schemes, which can be used to derive the elastic effective moduli of a rock, are presented. It is shown from experimental results that an excellent approximation is the so-called non-interactive scheme. The main consequences of the existence of cracks on the elastic waves is the development of elastic anisotropy (due to the anisotropic distribution of crack orientations) and the dispersion effect (due to microscopic local fluid flow). At a larger scale, macroscopic fluid flow takes place through the crack network above the percolation threshold. Two macroscopic fluid flow regimes can be distinguished: the percolative regime close to the percolation threshold and the connected regime well above it. Experimental data on very different rock types show both of these behaviors.
Keywords:Elastic wave  Cracked rocks  Permeability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号