首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Removal of Carbamazepine,Naproxen, and Trimethoprim from Water by Amberlite XAD‐7: A Kinetic Study
Authors:Joaquín R Domínguez‐Vargas  Teresa Gonzalez  Patricia Palo  Eduardo M Cuerda‐Correa
Institution:1. Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Badajoz, Spain;2. Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Badajoz, Spain
Abstract:The adsorption kinetics of carbamazepine, naproxen, and trimethoprim in aqueous solution by Amberlite? XAD‐7 has been studied. The influence of adsorbent dose (1–3 g/L), stirring rate (80–240 rpm), pH (2–9), temperature (20–60°C), and initial concentration (25–75 ppm) on the adsorption kinetics has been analyzed. The removal efficiency in the first 2 h reaches 85% for carbamazepine, 60% for naproxen, and 70% for trimethoprim. pH appears to be the most important factor conditioning the removal of these latter solutes, whereas carbamazepine adsorption seems to be independent of the pH of the adsorptive solution. Initial concentration and operation temperature moderately influence the adsorption process. Finally, stirring rate scarcely affects the process. The experimental data have been fitted to four kinetic models, namely pseudo‐first and pseudo‐second order, intra‐particle diffusion and Bangham's. The model providing the best fit is the pseudo‐second order one. Again, pH is the factor that affects the adsorption rate in a more remarkable manner although other parameters such as temperature and stirring rate also contribute to accelerate the removal of the solutes. Under the optimal operation conditions, Amberlite? XAD‐7 exhibits a promising ability for the removal of the pharmaceuticals under study.
Keywords:Drug removal  Kinetic modeling  Pharmaceutically active compound  Water pollution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号