首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-throughput production of peroxidase and its biodegradation potential toward polymeric material
Authors:N Khatoon  N I Sahar  U Ndu  N Ali  A Jamal  S Ahmed  M I Ali
Institution:1.Department of Microbiology,Quaid-i-Azam University,Islamabad,Pakistan;2.Department of civil and environmental engineering,Duke University,Durham,USA
Abstract:Plastics are polymeric materials, and their disposal is a great problem in today’s society. Large quantities of single-use plastics are used every minute throughout the world. Peroxidase enzymes play a significant role in the biodegradation of polymeric materials due to oxidoreductase capability. The objective is to determine which set of conditions optimize the production of peroxidase enzymes by Phanerochaete chrysosporium so as to degrade polymeric materials. The sequential order of parameters in terms of their relevant performance in the bioprocess was determined as urea > polyvinyl chloride > incubation time > polyethylene > veratryl alcohol > sucrose > ammonium sulfate > glucose > ferrous sulfate and polystyrene. Statistical analysis was performed by using analysis of variance which indicated the significance of model Plackett–Burman and components on the basis of F value and P value of 0.012678 < 0.05. The Fourier transform infrared spectroscopy of enzyme-treated polymer revealed structural changes at 1091, 1638 cm?1. A new peak appeared at wave number 1029 and represented the aromatic ether and phenolic group as compared to control. Biosynthesis of lignin peroxidase at optimized conditions has the potential for biodegradation of recalcitrant polymeric waste, due to its oxidoreductase capability for chemically inert material in nature like lignin and can be used for waste treatment on a large scale.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号