首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Koolau shield basalt as xenoliths entrained during rejuvenated-stage eruptions: perspectives on magma mixing
Authors:J?P?Weinstein  Email author" target="_blank">R?V?FodorEmail author  G?R?Bauer
Institution:(1) Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA;(2) Department of Land and Natural Resources, Honolulu, HI 96813 , USA;(3) Present address: US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
Abstract:Rejuvenated-stage tuff cones (Honolulu Volcanics) on Koolau volcano, Oahu, Hawaii, contain xenoliths of Koolau shield basalt. Because Koolau subaerial shield lavas represent a Hawaiian geochemical 'end member', and submarine shield lavas have compositions with some affinities to Mauna Loa and Kilauea, we analyzed 28 xenolithic basalts from Salt Lake and Koko Head cones to determine how these seemingly random samplings of the Koolau profile compare to established Koolau geochemistry. Analyses reveal that 24 are shield tholeiitic basalt—the focus of this study—and 4 are rejuvenated-stage basaltic rocks. The tholeiitic xenoliths represent largely upper Koolau shield lavas, as these samples (8.3 to 5.8 wt% MgO) have, with one exception, overall major- and trace-element compositions that overlap those of Koolau subaerial shield lavas. Secondary processes, however, created some distinctions—namely, enrichments/depletions in K, Ba, Sr, SiO2, and FeO, and, due to zeolitization (chabazite with attending okenite and apophyllite), elevated CaO. One xenolithic basalt with 8.2 wt% MgO has higher Ti, Zr, Nb, and Sc, and lower Zr/Nb than subaerial lavas, and appears to represent relatively early, deeper shield—thereby reinforcing that the Koolau shield source varied temporally. Olivine, orthopyroxene, and plagioclase are the phenocrysts (clinopyroxene is rare), and their core compositions range widely across the suite—Fo87.8–72, orthopyroxene Mg#s 85–72, and An74–60. Several xenolithic basalts have both normally and reversely zoned orthopyroxene and plagioclase with a variety of core compositions (e.g., orthopyroxene-core Mg#s 82, 77, and 72, all in one sample). These compositions and zonations record evidence for wide compositional ranges of replenishment (MgO ~13–8 wt%) and reservoir (MgO ~7 to <5 wt%) magmas mixing in varying proportions; however, extreme MgO lavas (~13 and <5 wt%) are not observed as either subaerial or xenolithic basalt, but are indicated by phenocryst cores of Fo87.8 and orthopyroxene-Mg# 72. The Koolau magma-mixing history resembles that of Kilauea, and is unlike the 'steady-state' mixing known for Mauna Loa. Finally, these basalt samples show that any xenolithic occurrence of Koolau lava is subject to the zeolitization prevalent in the tuff-cone hosts.Editorial handling: M. Carroll
Keywords:Koolau  Shield volcano  Hawaiian basalt  Basalt mineral compositions  Magma mixing  Magma replenishment  Zeolites
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号