首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alleghanian orogenic-float on the Martic thrust during dextal transpression, central Appalachian Piedmont
Authors:David W Valentino  Sameul T Peavy  Richard W Valentino  
Institution:a Department of Earth Sciences, State University of New York at Oswego, Oswego, NY 13126, USA;b Department of Geology and Physics, Georgia Southwestern State University, Americus, GA 31709, USA;c Department of Geology, Temple University, Philadelphia, PA 19122, USA
Abstract:During the Late Paleozoic Alleghanian orogeny, the mid-Atlantic Piedmont experienced transpressional deformation dominated by dextral strke-slip shear zones. The dextral displacement on these shear zones greatly influenced the geographic distribution of lithotectonic units. Transpressional deformation is evident in the Piedmont with the cogenetic development of domes and en-echelon antiforms between many of the shear zones. In the core of the Pennsylvania reentrant, major Alleghanian structures include the dextral Pleasant Grove shear zone and Tucquan-Mine Ridge antiform. Recent field mapping coupled with detailed metamorphic and deformation fabric studies have revealed that a major thrust, the Martic thrust, was also active during this time. Shear bands were identified during petrofabric analysis of the hanging wall rocks to the Martic thrust. The direction of displacement on these shear bands was parallel to the orogen, a direction contrary to earlier studies. Metamorphic mineral assemblages and ceased reaction textures, associated with ductile shear fabrics in the hangingwall rocks, are consistent with lower greenshist facies deformation. This low grade metamorphism, which is generally confined to sheared rocks, overprints the regional upper greenshist- to lower amphibolite-facies assemblages. Structural and magnetic modeling of the hangingwall block has revealed a complex geometry. A model of orogen parallel structural escape, or orogenic float, related to late Paleozoic dextral transpression is employed to explain the late reactivation on this important central Appalachian structure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号