首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Mean Rooftop-Level Estimation Method on Sensible Heat Flux Retrieved from a Large-Aperture Scintillometer Over a City Centre
Authors:Mariusz Zieliński  Krzysztof Fortuniak  W?odzimierz Pawlak  Mariusz Siedlecki
Institution:1.Department of Sustainable Development and Shaping of Geographic Environment,Pedagogical University of Cracow,Cracow,Poland;2.Department of Meteorology and Climatology, Faculty of Geographical Sciences,University of ?ód?,?ód?,Poland
Abstract:The sensible heat flux (H) is determined using large-aperture scintillometer (LAS) measurements over a city centre for eight different computation scenarios. The scenarios are based on different approaches of the mean rooftop-level \((z_{H})\) estimation for the LAS path. Here, \(z_{H}\) is determined separately for wind directions perpendicular (two zones) and parallel (one zone) to the optical beam to reflect the variation in topography and building height on both sides of the LAS path. Two methods of \(z_{H}\) estimation are analyzed: (1) average building profiles; (2) weighted-average building height within a 250 m radius from points located every 50 m along the optical beam, or the centre of a certain zone (in the case of a wind direction perpendicular to the path). The sensible heat flux is computed separately using the friction velocity determined with the eddy-covariance method and the iterative procedure. The sensitivity of the sensible heat flux and the extent of the scintillometer source area to different computation scenarios are analyzed. Differences reaching up to 7% between heat fluxes computed with different scenarios were found. The mean rooftop-level estimation method has a smaller influence on the sensible heat flux (?4 to 5%) than the area used for the \(z_{H}\) computation (?5 to 7%). For the source-area extent, the discrepancies between respective scenarios reached a similar magnitude. The results demonstrate the value of the approach in which \(z_{H}\) is estimated separately for wind directions parallel and perpendicular to the LAS optical beam.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号