首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling Gas And Dust Release From Comet Hale–Bopp
Authors:Prialnik  D
Institution:(1) Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
Abstract:Numerical simulations of the evolving activity of comet Hale-Bopp are presented, assuming a porous, spherical nucleus, 20 km in radius, made of dust and gas-laden amorphous ice. The main effects included are: crystallization of amorphous ice and release of occluded gas, condensation, sublimation and flow of gases through the pores, changing pore sizes, and flow of dust grains. The model parameters, such as initial pore size and porosity, emissivity, dust grain size, are varied in order to match the observed activity. In all cases, a sharp rise in the activity of the nucleus occurs at a large heliocentric distance pre-perihelion, marked by a few orders of magnitude increase in the CO and the CO2 fluxes and in the rate of dust emission. This is due to the onset of crystallization, advancing down to a few meters below the surface, accompanied by release of the trapped gases. A period of sustained, but variable, activity ensues. The emission of water molecules is found to surpass that of CO at a heliocentric distance of 3 AU. Thereafter the activity is largely determined by the behaviour of the dust. If a dust mantle is allowed to build up, the water production rate does not increase dramatically towards perihelion; if most of the dust is ejected, the surface activity increases rapidly, producing a very bright comet. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:Comets: general  comets: individual (Hale–  Bopp 1995 O1)}
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号