首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe
Authors:Youngseob Kim  Karine Sartelet  Christian Seigneur
Institution:1.CEREA, Joint Laboratory école des Ponts ParisTech / EDF R&D,Université Paris-Est,Champs sur Marne,France
Abstract:Two recent gas-phase chemical kinetic mechanisms for tropospheric ozone formation, one based on the lumped-structure approach (CB05) and the other based on the lumped-molecule approach (RACM2), are compared for simulations of ozone over Europe. The host air quality model is POLAIR3D of the Polyphemus modeling platform. A one-month period (15 July to 15 August 2001) is simulated. Model performance is satisfactory with both mechanisms. Overall, the two mechanisms give similar results with a domain-averaged difference of 3 ppb and a mean fractional absolute difference of 5% (values averaged over the month for the daily 8-h average maximum ozone concentrations). This difference results from different treatments in the two mechanisms for both inorganic and organic chemistry. Differences in the treatment of the inorganic chemistry are due mainly to differences in the kinetics of two reactions: NO + O3 \(\longrightarrow\) NO2 + O2 and NO + HO2 \(\longrightarrow\) NO2 + OH. These differences lead to a domain-averaged difference in ozone concentration of 5%, with RACM2 kinetics being more conducive to ozone formation. Differences in the treatment of organic chemistry lead to a domain-averaged difference in ozone concentration of 3%, with CB05 chemistry being more conducive to ozone formation. This average difference results in part from compensating effects among various VOC classes and some significant differences are identified at specific locations (the coastline of northern Africa and eastern Europe: 9%) and for specific organic classes (aldehydes, biogenic alkenes and aromatics). Differences in the treatment of the organic chemistry result from various aspects. For some VOC classes, such as aldehydes and biogenic alkenes, the more detailed explicit treatments using more model species in RACM2 lead to either greater or lower reactivity depending on the assumptions made for the oxidation products. For other VOC species, such as aromatics, the assumptions made about the major chemical oxidation pathways (aromatic alcohol formation in CB05 vs. ring opening in RACM2) affect the ozone formation significantly. Reconciliation of different chemical kinetic mechanisms will require experimental data to reduce current uncertainties in the kinetic (e.g., NO oxidation) and mechanistic (e.g., aromatics oxidation) representations of major chemical pathways.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号