首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer
Authors:MICHIEL R VAN DEN BROEKE
Institution:(1) Institute for Marine and Atmospheric Research, PO Box 80.005, 3508 TA Utrecht, The Netherlands;(2) Present address: Norsk Polarinstitutt, Postboks 5072, Majorstua, N 0301 Oslo, Norway
Abstract:During the summer of 1994, a meteorological experiment(PASTEX) was performed over the Pasterze Glacier,Austria. In this paper we describe the averagehorizontal and vertical structure of the atmosphericboundary layer (ABL) above the melting glacier, aswell as its diurnal variation during a period of fairweather. It was found that very persistent glacierwinds with a vertical extent of 100 m dominate thesummertime structure of the ABL, because the gravityforce acting on the near surface air parcels is manytimes larger than the synoptic-scale pressuregradient. During fair weather, we find a welldeveloped mountain-valley wind circulation above thekatabatic layer. During daytime, the valley wind advectswarm and humid air from the ice-free valley towardsthe glacier, limiting the development of the glacierwind. During the night, the downslope flows thatdevelop above the ice-free valley walls (mountainwind) merge with the glacier wind and enhance thedownslope transport of air. The associated subsidenceis the most probable cause for the drying of the lowerpart of the atmosphere during the night. Duringperiods of weak synoptic winds, the glacier windeffectively generates turbulence in the stronglystratified surface layer. On average, the turbulentfluxes of sensible and latent heat provide 25% of thetotal melting energy at the surface of the glaciertongue, and the influence of the glacier winds on thesurface energy budget can therefore not beneglected.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号