首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation
Authors:Mark Schmidt  Seth Xeflide  Stephen Mann
Institution:1 Institute for Geosciences, University Kiel, Olshausenstr. 40-60, D-24118 Kiel, Germany
2 School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
Abstract:Hydrous CaMg-carbonate was synthesized at temperatures of 40°, 60° and 80°C in the laboratory. This material has very similar mineralogical characteristics to natural disordered dolomite from the Coorong region in South Australia. Besides the dolomite variable amounts of amorphous carbonate are present in all samples. The oxygen isotope compositions of synthesized bulk carbonate samples (e.g., amorphous carbonate plus dolomite) plot significantly lower than the Northrop and Clayton (1966) dolomite-water equilibrium. Fractionated degassing of the samples, however, revealed relatively low oxygen isotope values for fast-reacting (using 100% H3PO4) amorphous carbonate. In contrast, slow-reacting dolomite has more positive oxygen isotope values, and calculated carbonate-water oxygen isotope fractionation values are close to strongest known dolomite-water oxygen isotope fractionation published earlier on. Variations of reaction/stabilization temperatures during synthesis gave evidence for dolomite formation from hypersaline solutions by a dissolution/reprecipitation process. It is likely that amorphous carbonate has been a problem in defining the dolomite-water fractionation in the past. Moreover, dolomite-associated amorphous carbonate contents probably led to incorrect speculations about lower oxygen isotope fractionation in a so-called protodolomite-water system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号