首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incipient hydrothermal alteration of basalts and the origin of martian soil
Authors:Melissa J Nelson  Horton E Newsom  David S Draper
Institution:Institute of Meteoritics, Department of Earth and Planetary Sciences, Albuquerque, NM 87131, USA
Abstract:The martian soil is a fine-grained regolith that is chemically basaltic in character with evidence for both gains and losses of volatile and mobile elements compared to martian basalt compositions. These chemical fractionations provide clues to geochemical processes on the surface of Mars. Geochemical processes contributing to the soil proposed in the past include the chemical and mechanical breakdown of rocks under surface conditions, the addition of volcanic aerosols containing S and Cl compounds, and the alteration of basaltic glass to palagonite. Our studies of terrestrial analogs suggest that hydrothermal alteration processes involving impact craters and volcanism could also contribute to the major element trends observed in martian soil. Data from Viking, Pathfinder, and the current MER missions consistently show that relative to basaltic martian meteorite compositions, the major element compositions of the soils are (1) depleted in the fluid-mobile element calcium, (2) generally similar or somewhat enriched in iron oxide and magnesium but MgO depleted compared to Gusev rocks, (3) locally variable in potassium, (4) possibly poorer in aluminum, and (6) very enriched in chlorine and sulfur. The major element trends, aside from the Cl and S enrichment, could be explained by the formation or addition of palagonite according to McSween and Keil (2000), but the missing CaO remains a problem. The chlorine and sulfur are probably derived from other processes such as volcanic aerosols and hydrothermal fluids. McSween and Keil (2000) also argued that hydrothermal alteration of basalts produce alteration trends that are inconsistent with the Mars soil, but this study concludes otherwise. We have used quantitative mass balance mixing models to investigate possible models involving mixtures of basaltic compositions with different types of alteration materials, including palagonite. We show that the Mars soil composition can be matched with a combination of unweathered basaltic martian meteorites with basaltic FeO-rich, CaO-poor alteration products. Palagonite is a possible, but not a necessary component of successful model mixtures. The hydrothermal alteration materials that form successful model mixtures are formed in low temperature, low water/rock ratio environments, and they can reproduce the required geochemical trends because they are poorer in CaO but not in FeO compared to their respective protoliths. These results argue that material altered by hydrothermal processes could be a plausible component of the soil, and that removal of CaO from the soil into some undiscovered reservoir after its formation is not required. The current soil on Mars, therefore, did not have to undergo an episode of in situ aqueous alteration but could represent a sink for materials that experienced aqueous processes in a different setting before erosion to form the soil. The soil can also represent a sink for mobile elements (e.g., S, Cl, and Br) derived from other sources such as volcanic aerosols and hydrothermal fluids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号