首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental measurements and modeling of sorption competition on montmorillonite
Authors:Michael H Bradbury  Bart Baeyens
Institution:Laboratory for Waste Management, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Abstract:The source terms arising from radioactive/toxic metal waste repositories will contain a multitude of dissolved metal species, as do natural systems. The influence of sorption competition on the uptake of safety-relevant metals, and the effects this may have on transport rates to the biosphere, is an important repository performance assessment issue which has not, as yet, been resolved. The main aim of this work was to quantify the influence of competition between metals in different valence states on their individual sorption characteristics under conditions dominated by pH-dependent sorption. The sorption experiments were carried out on Na- and Ca-montmorillonites using various combinations and concentrations of Co(II), Ni(II), Zn(II), Eu(III), Nd(III), Am(III), Th(IV), and U(VI). For metals sorbing at trace concentrations in a background electrolyte containing a competing metal up to mmolar concentrations, and pH values generally greater than 6, all of the experimental results were consistent with the observation that metals with similar chemistries (valence state, hydrolysis behavior) compete with one another, but metals with dissimilar chemistries do not compete, i.e., competition is selective. For example Eu, Nd, and Am exhibit unambiguous sorption competition effects, as do Ni, Co, and Zn. On the basis of the above preliminary criteria, competition between divalent transition metals and trivalent lanthanides, Th(IV), and U(VI) and between Th (IV) and U(VI) would not be expected, and this is found experimentally. In general, neither single-fixed-site capacity models nor two-site (strong/weak) models with fixed capacities, whether with or without electrostatic terms, are capable of modeling the spectrum of experimental results presented here. To explain the competitive effects observed it is proposed that multiple sets of strong sites exist as subsets of the 40 mmol kg−1 of weak sites present in the montmorillonite conceptual model. It is shown that if the 2SPNE SC/CE sorption model is extended to include multiple strong sites, and the average site capacity and protolysis constant values defined in previous publications are assigned to each of the sets of strong sites, then the model can be used to reproduce all of the experimental data, provided it can be specified which groups of metals are competitive and which are not.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号