首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling stratification and baroclinic flow in the estuarine transition zone of the St. Lawrence estuary
Abstract:Abstract

This paper presents a hydrodynamic study of the St. Lawrence Estuary's estuarine transition zone, a 100 km region where fresh water from the river mixes with salt water from the estuary. The circulation of the estuarine transition zone is driven by strong tides, a large river flow, and well‐defined salinity gradients. For this study, a three‐dimensional hydrodynamic model was applied to the estuarine transition zone of the St. Lawrence Estuary and used to examine stratification and density‐driven baroclinic flow. The model was calibrated to field observations and subsequently predicted water level elevations, along‐channel currents, and salinity with mean errors of less than 9%, 11%, and 17%, respectively. The baroclinic density‐driven currents were distinguished from the tidal barotropic currents by using principal component analysis. Stratification and baroclinic flow were observed to vary throughout the estuarine transition zone on tidal and subtidal spring‐neap time scales. On a semidiurnal tidal time scale, stratification was periodic, and baroclinic flow was represented by pulses of sheared exchange flow, suggesting that neither buoyancy forcing nor turbulent mixing is dominant at this scale. On a subtidal spring‐neap time scale, stratification and baroclinic flow varied inversely with tidal energy, increasing on weak neap tides and decreasing on strong spring tides.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号