首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluid-rock interaction modeling to constrain Au enrichment: Implication for the giant Jiaodong Au mineralization,eastern North China Craton
Institution:1. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2. CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China;3. Department of Earth Sciences, University of Geneva Rue des Maraîchers 13, 1205 Geneva, Switzerland;4. University of Chinese Academy of Sciences, 100049, China;5. Guangzhou Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China
Abstract:The devolatilization model of the metasomatized lithospheric mantle without pre-enriched gold has been proposed to account for the giant gold mineralization. An excellent example is the world-class Jiaodong gold province with >5000 tonnes Au resources in the eastern North China Craton. The auriferous fluid transport and gold enrichment during wallrock alterations are two vital processes to determine the giant gold mineralization formation in this province. However, the effects of the fluid-rock interaction with alterations on the auriferous fluid transport and gold enrichment still keep poor understanding, which leads the above model to be imperfect. The giant Jiaojia goldfield in this province recorded a wallrock alteration evolution from K-feldspar alteration to pyrite-sericite-quartz alteration, and some parts of the latter can become gold orebodies when the gold grade is >1 ppm. This study conducts thermodynamic fluid-rock interaction modeling to reveal auriferous fluid transport and coupled relationship between gold enrichment and alteration mineral assemblage based on the alteration-mineralization and ore fluid characteristics of the goldfield. The modeling of fluid-rock interaction with cooling indicates the transformation of Au-Cl complexes to Au-S complexes combined with the total sulfur concentration decrease by pyrite precipitation when cooling from ~460 °C can trigger the dispersive gold precipitation, which should hinder the gold long-range transport to lower ambient temperature. The high oxygen fugacity at >400 °C can enhance Au-Cl complexes stability, and the low pH can maintain high total sulfur concentration in the auriferous fluid, both of which facilitate the long-range gold transport to a lower-temperature environment. The auriferous fluid would acquire higher pH by the buffering of feldspars or sericite, which was beneficial for the high-efficiency precipitations of pyrite and gold. The ankerite-siderite assemblage without pyrophyllite in the pyrite-sericite-quartz alteration zone indicates that a cumulative fluid to rock mass ratio (f/r) of 3.8–4.8 should be needed for the transformation from K-feldspar alteration to pyrite-sericite-quartz alteration according to the fluid-rock interaction modeling at 300 °C and 2000 bar. In the case of auriferous fluids with ≤200 ppb Au concentration, the single fluid-rock interaction can only elevate the gold grade to ≤0.69–0.87 ppm in the pyrite-sericite-quartz alteration zone at f/r 3.8–4.8. Therefore, the fracture-induced fluid flow coupled with fluid-rock interaction is proposed to the prerequisite to elevate the gold grade to >1 ppm in the pyrite-sericite-quartz alteration zone. The metasomatized lithospheric mantle volume for the required ore fluid and Au in the Jiaodong province is estimated according to the modeling results and alteration-mineralization characteristics, which provides a link between the mantle without abnormal Au enrichment and the alteration-mineralization processes.
Keywords:Fluid-rock interaction modeling  Wallrock alteration  Gold enrichment  Metasomatized lithospheric mantle  Jiaodong Peninsula
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号