首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya
Authors:Soumyajit Mukherjee  Kieran F Mulchrone
Institution:1. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
2. School of Mathematical Sciences, Department of Applied Mathematics, University College, Cork, Ireland
Abstract:The Tso Morari crystalline (TMC) gneiss dome in the Indian Himalaya extruded from a depth of?~120?km through an inclined subduction channel of sub-elliptical cross-section at the leading edge of the Indian plate. The velocity profile of this gneiss dome is derived after (1) presuming its incompressible Newtonian rheology, (2) finding the “best fit” of the outcrop of the gneiss dome to an ellipse, (3) taking into account different lithologies to have existed at the top of the extruding gneiss body, (4) considering the extrusion to have been driven by the buoyant push of the denser mantle beneath the lighter gneiss, and (5) assigning a range of plausible densities for different litho-units. Fitting the known rates of extrusion—from a few centimetres up to about one-hundredth of a millimetre per year—from?~53?Ma onwards of this gneiss dome to its velocity profile constrains its maximum possible viscosity to?~7.5?×?1022 Pa?s. This magnitude is?102–104 times higher than previous estimates for gneisses and granites. Alternative explanations of our data are the following: (1) There was a fall in extrusion rates of the TMC gneiss from 53?to?<30?Ma because of an increase in the estimated maximum viscosity from 6.2?×?1020 to 7.5?×?1022 Pa?s, possibly indicating a fall in temperature and/or compositional change of the TMC gneiss. (2) Lower the extrusion rates, higher are the estimated viscosities. (3) The TMC gneiss was more viscous probably due to its eclogite content. (4) The estimated maximum viscosity is?~102 times higher than that in collision zones and?102–104 times than that in the Tibetan lower crust, but broadly conforms to that for the crustal channel, and average lithospheric and asthenospheric values. The high magnitude of maximum possible Prandtl number of?~1028 of the TMC gneiss might be related to isothermal decompression of the gneiss during its extrusion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号