首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics models
Authors:José M Carcione  Martin Landrø  Anthony F Gangi  Fabio Cavallini
Institution:Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy;, Department of Petroleum Engineering and Applied Geophysics, Norges Teknisk-Naturvitenskapelige Universitet (NTNU);and Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3114, USA
Abstract:Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro‐elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ΔL/L, and seismic velocity, Δv/v, are related by a linear function of ΔL/L. The slope of this function (the dilation factor, α= (Δv/v)/(ΔL/L) ) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time‐lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号