首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ignimbrite morphology and the effects of erosion: a New Zealand case study
Authors:CJN Wilson
Institution:(1) Geology Department, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ Bristol, UK;(2) Present address: Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ Cambridge, UK
Abstract:Ignimbrite morphology, previously generalised using aspect ratios, is here quantified as the relationships between the various thicknesses of material forming an ignimbrite and the areas and volumes represented by those thicknesses. The morphology can be measured for the deposit in its present-day, eroded condition, or reconstructed for the original deposit. The reconstructed morphology of the 22 500 year BP, ca. 11 500 km2, ca. 300 km3 Oruanui ignimbrite in New Zealand is documented to illustrate the latter approach. The Oruanui ignimbrite is an intermediate aspect ratio deposit and shows broadly linear relationships between (1) In thickness and the cumulative area occupied by that thickness or less of material and (2) thickness and the volume represented by that thickness or less of material. Two theoretical morphologies, one where thicknesses exponentially decay with distance from a maximum and the other of uniform thickness (ldquoslabrdquo), are compared with the Oruanui data. Limited comparative data suggest that low aspect ratio (violently emplaced) ignimbrites will show upward-concave curves (at one extreme following the ldquoexponential decayrdquo model) and high aspect ratio (gently emplaced) ignimbrites downward-concave curves (with the ldquoslabrdquo model as an extreme) when plotted on diagrams where the Oruanui data show linear trends. The effects of erosion on Oruanui and model ignimbrite morphologies are modelled using two theoretical erosion scenarios: (1) material is evenly removed from the land surface, and (2) thinner, non-welded material is preferentially removed. For the Oruanui ignimbrite data, area is lost much more rapidly in the first instance than volume; for example, 5 m of erosion is sufficient to remove 50 area %, whereas 40 m (scenario 1) or 120 m (scenario 2) of erosion is required to remove 50 volume %. In old ignimbrites, volume estimates may be reasonably accurate even after strong erosion, provided the original thicknesses of ponded/landscape-forming material can be inferred, but estimates of original area and aspect ratio will be inaccurate. An envelope enclosing all known outcrops of an ignimbrite will give a better estimate of original area and aspect ratio than simply summing the areas of known outcrops.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号