首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical study of comparison of two one-state-variable,rate- and state-dependent friction evolution laws
Authors:Jeen-Hwa Wang
Abstract:The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are compared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., Δ (the normalized characteristic slip distance) and β?α (the difference in two normalized parameters of friction laws), control the solutions. From given values of Δ, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when Δ>(β?α), yet not when Δ < (β?α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.
Keywords:one-state-variable  rate- and state-dependent friction law  direct effect  evolution effect  characteristic slip displacement  
点击此处可从《Earthquake Science》浏览原始摘要信息
点击此处可从《Earthquake Science》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号