首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Source process of the 1990 Gonghe,China, earthquake and tectonic stress field in the northeastern Qinghai-Xizang (Tibetan) plateau
Authors:Y T Chen  L S Xu  X Li  M Zhao
Institution:(1) Institute of Geophysics, State Seismological Bureau, 100081 Beijing, China
Abstract:TheM s =6.9 Gonghe, China, earthquake of April 26, 1990 is the largest earthquake to have been documented historically as well as recorded instrumentally in the northeastern Qinghai-Xizang (Tibetan) plateau. The source process of this earthquake and the tectonic stress field in the northeastern Qinghai-Xizang plateau are investigated using geodetic and seismic data. The leveling data are used to invert the focal mechanism, the shape of the slipped region and the slip distribution on the fault plane. It is obtained through inversion of the leveling data that this earthquake was caused by a mainly reverse dip-slipping buried fault with strike 102°, dip 46° to SSW, rake 86° and a seismic moment of 9,4×1018 Nm. The stress drop, strain and energy released for this earthquake are estimated to be 4.9 MPa, 7.4×10–5 and 7.0×1014 J, respectively. The slip distributes in a region slightly deep from NWW to SEE, with two nuclei, i.e., knots with highly concentrated slip, located in a shallower depth in the NWW and a deeper depth in the SEE, respectively.Broadband body waves data recorded by the China Digital Seismograph Network (CDSN) for the Gonghe earthquake are used to retrieve the source process of the earthquakes. It is found through moment-tensor inversion that theM s =6.9 main shock is a complex rupture process dominated by shear faulting with scalar seismic moment of the best double-couple of 9.4×1018 Nm, which is identical to the seismic moment determined from leveling data. The moment rate tensor functions reveal that this earthquake consists of three consecutive events. The first event, with a scalar seismic moment of 4.7×1018 Nm, occurred between 0–12 s, and has a focal mechanism similar to that inverted from leveling data. The second event, with a smaller seismic moment of 2.1×1018 Nm, occurred between 12–31 s, and has a variable focal mechanism. The third event, with a sealar seismic moment of 2.5×1018 Nm, occurred between 31–41 s, and has a focal mechanism similar to that inverted from leveling data. The strike of the 1990 Gonghe earthquake, and the significantly reverse dip-slip with minor left-lateral strike-slip motion suggest that the pressure axis of the tectonic stress field in the northeastern Qinghai-Xizang plateau is close to horizontal and oriented NNE to SSW, consistent with the relative collision motion between the Indian and Eurasian plates. The predominant thrust mechanism and the complexity in the tempo-spatial rupture process of the Gonghe earthquake, as revealed by the geodetic and seismic data, is generally consistent with the overall distribution of isoseismals, aftershock seismicity and the geometry of intersecting faults structure in the Gonghe basin of the northeastern Qinghai-Xizang plateau.Contribution No. 96 B0006 Institute of Geophysics, State Seismological Bureau, Beijing, China.
Keywords:Qinghai-Xizang (Tibetan) plateau  source process  moment tensor  tectonic stress field
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号