首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Zermatt‐Saas ophiolite: the largest (60‐km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone?
Authors:S Angiboust  P Agard  L Jolivet  O Beyssac
Institution:Laboratoire de Tectonique, UMR CNRS 7072, UniversitéPierre et Marie Curie, Tour 46-00, 2èmeétage, Case 129, 4 Place Jussieu, 75252 Paris, France;;Laboratoire de Géologie, UMR CNRS 8538, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
Abstract:The Western Alps are a classic subduction-related collisional orogen with well-preserved, deeply subducted ophiolitic remnants of oceanic lithosphere. Some (e.g. Monviso, Voltri) were recognized as a palaeo-subduction channel, with tectonic blocks showing a wide range of pressure–temperature conditions. We herein evaluate for the first time the metamorphic homogeneity of the extensive Zermatt-Saas ophiolite. Zermatt-Saas peak eclogitic assemblages are represented by omphacite–garnet ± phengite ± epidote ± lawsonite ± glaucophane in MORB-derived metabasalts and garnet–chloritoid–talc ± lawsonite ± phengite in hydrothermalized metabasalts. Thermobarometric estimates with thermocalc and Raman Spectroscopy of carbonaceous material reveal homogeneous peak burial conditions at around 540 ± 20 °C and 23 ± 1 kbar. P – T paths indicate that the whole of the ophiolite, at least 60 km across, strikingly underwent similar burial and exhumation patterns and detached from the slab at depths around 80 km. The Zermatt-Saas ophiolite thus appears to be the world's largest oceanic lithosphere fragment exhumed from such depths, which provides important constraints on interplate coupling mechanisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号